
Thermische / Hygienische Behaglichkeit als Grundlage für die Auslegung von modernen gebäudetechnischen Systemen

Frank Hartmann (BDH) im Dialog mit Prof. Dr.-Ing. habil. J. Seifert (TU Dresden)

Der Fachbereich Flächenheizung/-kühlung im BDH

Die Mitgliedsunternehmen des Fachbereichs finden Sie auf unserer Website https://www.flaechenheizung-bdh.de/system/hersteller-flaechenheizung-und-flaechenkuehlung-deutschland und am Ende dieser Präsentation.

https://www.flaechenheizung-bdh.de/

Einleitung

Themenblock 1 – Grundlagen zur Wärmebilanz des Menschen

Themenblock 2 - Kriterien zur Bewertung der thermischen Behaglichkeit

Themenblock 3 - Hygienische Behaglichkeit

Informationsblatt Nr.78

August 2022

Wärmeübergabe für Thermische Behaglichkeit und Komfort

1. Einleitung

Die Thermische Behaglichkeit stellt sich nicht von selbst ein. Sie lässt sich erreichen wenn gegingtet bau- und anlagemetenhische Läusungen unter Beachtung der Nutzungsandbedingungen (E.B. zusätzliche innere Lasten durch Geräte oder Kunstlicht sowie Bekleidung im Brügm int der Zule zines hohen hermischen Komforts realisiert werden. Dabei sollten luftbygeinisch oder bauphysikalisch bedenklichen Verhältnissen wernieden sowie der Energieverbetauch minimert verden. Eine gannbetliche Betrachtungsweise zur Einhaltung der Thermischen Behaglichkeit ist eine wichtige Voraussetzung für kostengisnistiges Bauen heur. Modernisieren, optimierte Energieeinsparung und den uneingeschränkten Komfort für die Nutzer in Aufenthaltsräumen von Wobnungen. Bilors uber

Die Thermische Behaglichteit hängt von einer Velzahl von Einflussfaktoren ab. Unter anderem spielen die Kleidung, die Täligkeit und die köperliche Verfassung sowie die Luftfeuchtigkeit der Bäume eine entscheidende Rolle. Unterschiedliche Temperaturen die den Küpper stats belasten, werden als unangenehm empfunden. Thermische Behaglichkeit und ein Wohlfühlklima im Raum werden erreicht, wenn der menschliche Körper im Sommer weder im Schwitzen noch im Winter ins Friereng gest 1. Aus spricht in der Fachwelt von "geringsten thermoregulatorischen Aufwendungen" des menschlichen Köppers.

Die meisten Menschen füblen sich im Winter bei einer operativen Raumtemperatur na zie is 22 "Vooll und im Sommer bei einer operativen Raumtemperatur von 23 bis 27 "C (siehe Abbildung t)". Ein Raum wird vom Menschen als behaglich empfunden, wenn die Differenz zwischen Wandoberflächentemperatur und Raumfult weniger als 4K, die Differenz zwischen Fuß- und Kopfinöbe weniger als 3 K und die Temperaturen verschiedener Raumflächen (in Anlehnung an die Grenzwerte zur zullässigen Strahlungsasymmetrig weniger als 5 K beträgt.

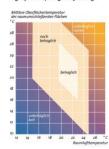
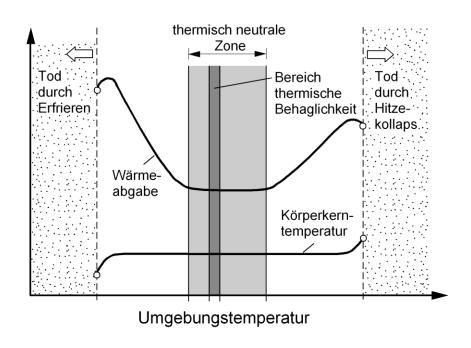


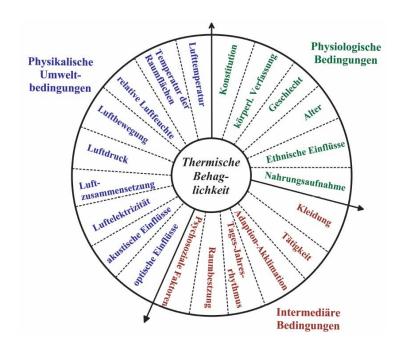
Abb. 1: "Raumklima und thermische Behaglichkeit", Berichte aus der Bauforschung, Heft 104, Berlin 1975

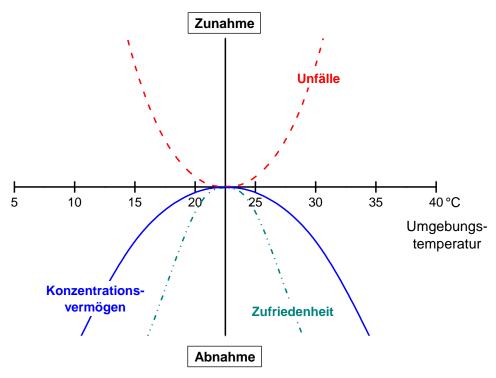
1 Unter der operativen Raumtemperatur wird vereinfacht der Mittelwert zwischen Strahlungstempenatur der Raumunschließungstichen und Luftemperatur im Raum verstanden. Die operative Raumtemperatur ist eine Indikationsgröße für die Themische Behaglischen.

Bundesverband der Deutschen Heizungsindustrie e.V. Frankfurter Straße 720–726 51145 Köln

Tel.: (0 22 03) 9 35 93 - 0 Fax: (0 22 03) 9 35 93 - 22 E-Mail: info@bdh-industrie.de Internet: www.bdh-industrie.de




Im Dialog (1)


Warum heizt bzw. kühlt man Gebäude?

Thermische Behaglichkeit in Abhängigkeit von physiologischen, intermediären und physikalischen Einflüssen

(Umstrittener) Zusammenhang zwischen Umgebungstemperatur des Menschen und seiner Leistungsfähigkeit – schematische Darstellung

Thermische Behaglichkeit:

Definition:

Ist als der Zustand definiert, bei dem der Körper die geringsten thermoregulatorischen Aufwendungen vornehmen muss, um eine konstante Körperkerntemperatur aufrecht zu erhalten.

lebensnotwendige Wärmeabgabe muss unspürbar und anstrengungslos erfolgen

Randbedingungen:

- 1. physikalische Umweltbedingungen (Lufttemperatur, Temperaturen der Umschließungsflächen, relative Feuchte, Luftdruck sowie Luftbewegung)
- 2. physiologische Bedingungen (Alter, Geschlecht, körperliche Verfassung, Tätigkeit)
- 3. intermediäre Bedingungen (Kleidung, psychosoziale Faktoren)

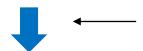
Thermoregulation des Menschen

- Menschen sind homöotherme Lebewesen mit konstanter Körperkerntemperatur
- $-9_{\kappa}=36,7...37,2^{\circ}C$

Thermoregulatorische Funktionen des Menschen

Physikalische Wärmeregulation	Chemische Wärmeregulation
Aktive Körperbewegung	Staffwachcalhaainflussung
(Handreiben / Laufen)	Stoffwechselbeeinflussung
Körperhaltung	
(Muskelzittern / Gänsehaut)	
Veränderungen des Atemvolumenstromes	

sehr komplexe regelungstechnische Zusammenhänge


$$\dot{Q}_B = P_{M,eff} + \dot{Q}_M$$

- $Q_{\scriptscriptstyle B}$ Bruttoenergieumsatz in W
- $P_{M,eff}$ Arbeitsleistung in W
 - $Q_{\scriptscriptstyle M}$ Gesamtwärmeabgabe in W (Konvektion und Strahlung)

Wirkungsgrad der menschlichen Arbeitsleistung

$$\dot{Q}_{B} = \eta_{M} \cdot \dot{Q}_{B} + (1 - \eta_{M}) \cdot \dot{Q}_{B}$$

$$P_{M,eff} \qquad Verlustglied \quad \dot{Q}_{M}$$

Mit Bezug auf die Oberfläche des nackten Menschen

$$\frac{\dot{Q}_M}{A_{M,n}} = \dot{q}_M = (1 - \eta_M) \cdot \dot{q}_B$$

Wärmeabgabe eines erwachsenen Menschen bei unterschiedlichen Tätigkeiten

Belastung	Tätigkeit	Wärmeabgabe des Menschen W/m²
Ruhe	Schlafen	40
	Sitzen (entspannt)	58
Gehen	In der Ebene (4,8 km/h)	150

Wärmeabgabe des Menschen

Wärmetransport durch die Kleidung

Hauttemperatur

$$R_{KL,Anzug} = \left(\frac{\lambda}{\delta}\right)_{KL,Anzug} = 0.155 \, m^2 \cdot K / W$$
 normaler Büroanzu $R_{KL}' = \frac{R_{KL}}{0.155}$

Kleidungswiderstand für unterschiedliche Bekleidungsarten

Bekleidungsart	R' _{KL} in clo	R _{KL} in (m²K/W)	
nackt	0	0	
Shorts, T-Shirt	0,30	0,047	
leichte Arbeitskleidung	0,55	0,085	
normaler Büroanzug	1,0	0,155	
leichte Reisekleidung	1,5	0,233	
Polarkleidung	3,5	0,543	

Berechnung der Wärmeabgabe des Menschen (Fanger Gleichung)

$$\dot{q}_{M} = \dot{q}_{D} + \dot{q}_{V} + \dot{q}_{A} + \dot{q}_{K} + \dot{q}_{S}$$

$$\dot{q}_{M,f} \qquad \dot{q}_{M,tr}$$

 $\dot{q}_{\scriptscriptstyle M}$ - spezifische Gesamtwärmeentwicklung des Menschen

 $\dot{q}_{\scriptscriptstyle A}$ - spezifischer Wärmestrom durch Atmung

 $\dot{q}_{\scriptscriptstyle D}$ - spezifischer Wärmestrom durch unspürbare Verdunstung

 $\dot{oldsymbol{q}}_V$ - spezifischer Wärmestrom durch spürbare Verdunstung

 $\dot{q}_{\scriptscriptstyle K}$ - spezifischer Wärmestrom infolge Konvektion

 $\dot{q}_{\scriptscriptstyle S}$ - spezifischer Wärmestrom infolge Strahlung

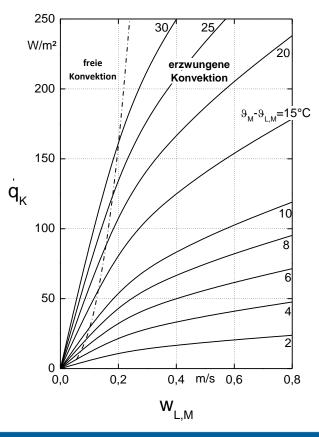
1. Diffusion

2. Verdunstung

$$\dot{q}_{V} = \frac{\dot{Q}_{V}}{A_{M,n}} = 0.42 \cdot (\dot{q}_{B} \cdot (1 - \eta_{M}) - 58)$$
 bei η_{M} =0
$$\dot{q}_{W} = 0.42 \cdot (\dot{q}_{B} - 24.36)$$

Die genannte Gleichung zur Bestimmung des Verdunstungswärmestromes gilt nur für den Zustand der thermischen Behaglichkeit.

3. Atmung


$$\dot{q}_{A} = \frac{\dot{m}_{A}}{A_{M,n}} = \begin{bmatrix} h_{A} - h_{L,M} \end{bmatrix} \qquad \dot{q}_{A} = \dot{q}_{B} \cdot (0.1486 - 1.1029 \cdot 10^{-3} \cdot \mathcal{G}_{L,M} - 1.7744 \cdot 10^{-5} \cdot p_{D,L})$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

mit dem spezifischen Atemluftmassestrom folgt

$$\frac{\dot{m}_A}{A_{M,n}} = 1,433 \cdot 10^{-6} \cdot \dot{q}_B$$

4. Konvektion

$$\begin{split} \dot{Q}_{K} &= \alpha_{K} \cdot A_{M} \cdot (\mathcal{G}_{M} - \mathcal{G}_{L,M}) \\ \text{mit} \qquad f_{KL} &= \frac{A_{M}}{A_{M,n}} \text{ als Bekleidungsfaktor folgt} \\ \dot{Q}_{K} &= \alpha_{K} \cdot f_{KL} \cdot A_{M,n} \cdot (\mathcal{G}_{M} - \mathcal{G}_{L,M}) \end{split}$$

$$\dot{Q}_{K} = \alpha_{K} \cdot f_{KL} \cdot A_{M,n} \cdot (\mathcal{G}_{M} - \mathcal{G}_{L,M})$$

Spezifische konvektive Wärmeabgabe des bekleideten Menschen (f_{KL}=1,1)

5. Strahlung

$$\dot{q}_S = \frac{\dot{Q}_S}{A_{M,n}} = 3.97 \cdot 10^{-8} \cdot f_{KL} \cdot \left[T_{KL}^4 - \overline{T}_{U,n}^4 \right]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

absolute Temperatur der Bekleidung

Anteil der (behaglichen) Wärmeabgabe bei unterschiedlichen Aktivitäten

Aktivität	Atmung in %	Diffusion in %	Verdunstung in %	Konvektion in %	Strahlung in %
Sitzend	10	20	0	32	38
Leichte Arbeit	11	13	18	29	29

Besonders wichtige Kenngrößen für die thermische Behaglichkeit

Stationäre Behaglichkeitskriterien (Fanger Gleichung)

- PMV Predicted Mean Vote
 (predictable average climate assessment)

 globale
 Kriterien - PMV - Predicted Mean Vote
- PPD Predicted Percentage of Dissatisfied

PMV-Index (Predicted Mean Vote)

$$PMV = (e^{-0.036\dot{q}_M} + 0.0275) \cdot (\dot{q}_M - \sum \dot{q}_{ab,b})$$

Maßstab für die Einteilung des PMV –Wertes

PMV-index	-3	-2	-1	0	1	2	3
sensation	cold	cool	moderately cool	neutral	moderately warm	warm	hot

PPD-Index (Predicted Percentage of Dissatisfied)

$$PPD = 100 - 95 \cdot e^{(-0.03353PMV^4 - 0.2179PMV^2)}$$
permissible range
$$100$$
PPD in % 20
$$10$$

$$8$$

$$6$$

$$-3.0 \leftarrow -2.0 \cdot 1.5 \cdot -1.0 \cdot -0.5 \quad 0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \rightarrow 3.0$$

PMV-index

0,5

1.0

 $1.5 \quad 2.0 \rightarrow 3.0$

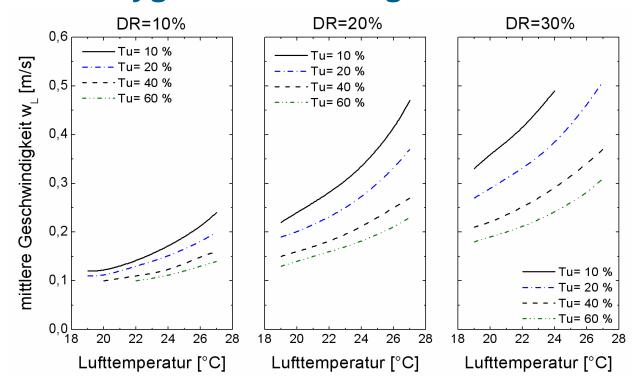
Lokale thermische Behaglichkeitskriterien

- Raumlufttemperaturgradient $\Delta \vartheta_{\text{L,1,1..-0,1}}$
- Strahlungsasymmetrie $\Delta \theta_{\mathsf{S}}$
- Zugluftrisiko DR
- maximale Oberflächentemperatur $\Delta \theta_{OF} (\rightarrow FBH)$

Kriterien

Um thermischen Komfort zu gewährleisten, müssen lokale und globale Behaglichkeitskriterien gleichermaßen erfüllt sein

Lokale thermische Behaglichkeitskriterien


1. Zugluftrisiko

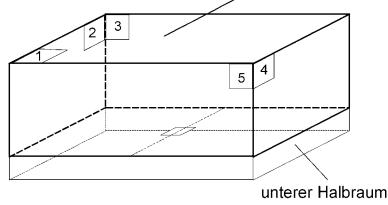
Ziel: Begrenzung von Wärmestromdichten

$$Tu = \frac{1}{U_{\infty}} \cdot \sqrt{\frac{1}{3} - (u^2 + v^2 + w^2)}$$
 Turbulenzgrad

In der Praxis ist der Turbulenzgrad nur sehr schwer zu messen, daher Übergang zu vereinfachten Kenngrößen der thermischen Behaglichkeit **z.B. operative Raumtemperatur**

Zugluftrisiko in Abhängigkeit der Lufttemperatur und der mittleren Luftgeschwindigkeit

2. Strahlungsasymmetrie


Ziel: Begrenzung von Wärmestromdichten

oberer Halbraum bestehend aus den Teilflächen 1 + 2 + 3 + 4 + 5

$$\theta_{S,i} = \left[\sum_{j} \varphi_{i,j} (\theta_{j} + 273,15)^{4}\right]^{0,25} - 273,15$$

$$\Delta \mathcal{G}_{S} = \left[\mathcal{G}_{S,i}\right]_{\text{max}} - \left[\mathcal{G}_{S,i}\right]_{\text{min}}$$

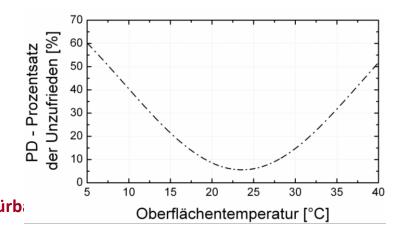
$$PD = \frac{100}{1 + e^{x - y \cdot \Delta \theta_s}} - z$$

Parameter zur Ermittlung des Prozentsatzes von **Unzufriedenen** infolge von Strahlungsasymmetrie

	X	у	z	< $\Delta artheta_{ extsf{S}}$ in K
warme Decke	2,84	0,174	5,5	23
kalte Wand	6,61	0,345	0	15
kalte Decke	9,93	0,50	0	15
warme Wand	3,72	0,052	3,5	35

3. Vertikaler Lufttemperaturgradient

Ziel: Vermeidung von zu großen Wärmestromdichten zwischen Kopf/Fußgelenken (1,1m und 0,1m über Fußboden)

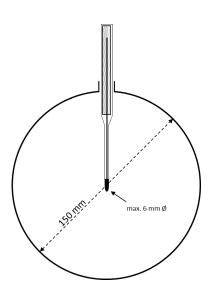

$$PD = \frac{100}{1 + e^{5,76 - 0.856 \Delta \theta_{L1,1 - 0.1m}}}$$

4. Fußbodenoberflächentemperaturen

Ziel: Vermeidung von zu großen Wärmestromdichten am Fuß

(Wärmeabgabe der Füße anstrengungslos und unspürb)

$$PD = 100 - 94 \cdot e^{(-1.387 + 0.1189_{OF} - 0.00259_{OF}^{2})}$$



Prozentsatz der Unzufriedenen als Funktion der Oberflächentemperatur des Fußbodens

Anwendung der theoretischen Beziehungen in der Praxis?

Vereinfachtes Verfahren: operative Raumtemperatur (Empfindungstemperatur)

$$\mathcal{G}_{op} = a \cdot \mathcal{G}_L + (1 - a) \cdot \mathcal{G}_S$$

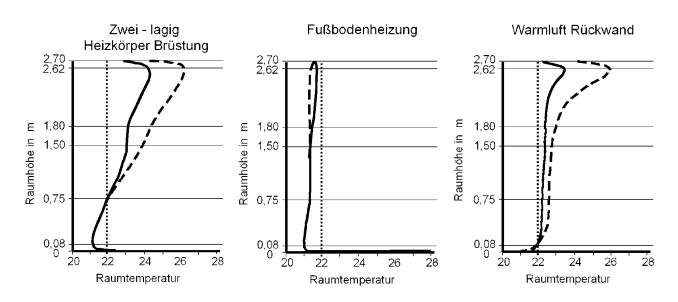
Globe-Thermometer für die Bestimmung der operativen Raumtemperatur

Beispiel:

$$\rightarrow$$
 HK: a=0,5; θ_L =23° C; θ_S =19° C --- θ_{op} =21° C

$$\rightarrow$$
 FBH: a=0,5; ϑ_L =20° C; ϑ_S =24° C --- ϑ_{op} =22° C

- unzureichende Aussage in der EN 16798-1 / DIN ISO 7730 zur gleichzeitigen Wirkung aller Behaglichkeitskriterien
- daher Definition einer "Summativen Thermischen Behaglichkeit" bei Annahme des jeweils ungünstigsten (konservativen) Wertes

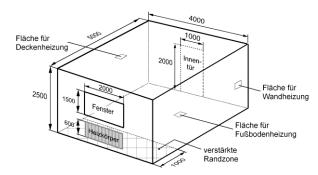

"Summative thermische Behaglichkeit" als Kombination verschiedener Größen

Kriterium	Kategorie	Kombination	Kategorie
PMV / PPD	Α		
max. Strahlungsasymmetrie	В	 Summative thermische	
max. Lufttemperaturgradient	Α	 Behaglichkeit	С
Zugluftrisiko	C		

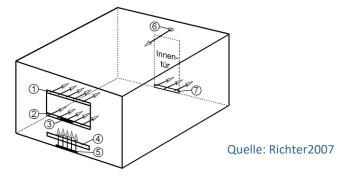
Messtechnische Untersuchungen

(Labor) – jedoch Beschränkung auf Einzelfälle

Vertikale Lufttemperaturunterschiede bei verschiedenen Heizsystemen

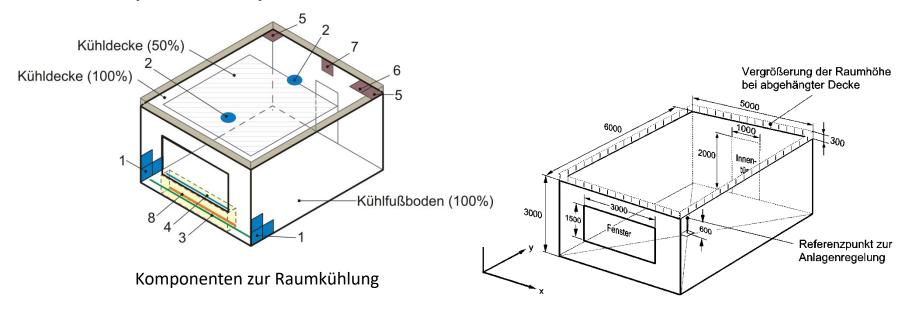

Numerische Untersuchungen:

- Problem der fehlenden Software
- jedoch Chance
- -- Betrachtung des gesamten Raumes / Systembetrachtung
- -- Vielzahl von Parametern

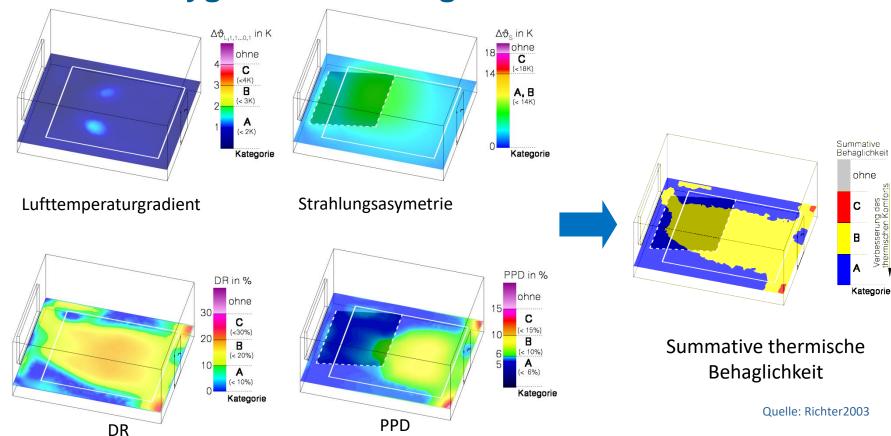


Einzige Möglichkeit zur Schaffung praxisgerechter Unterlagen

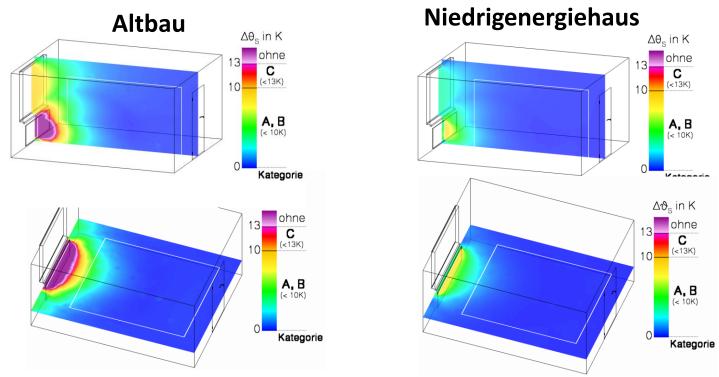
Raummodell (Heizbetrieb)



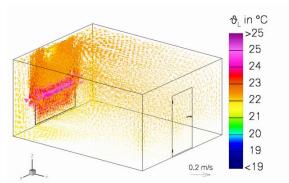
Komponenten zur Raumheizung

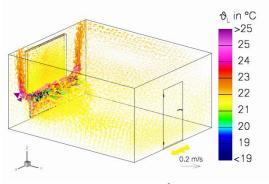

Komponenten zur Raumlüftung

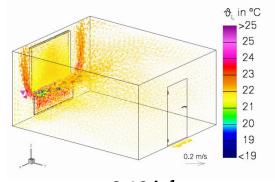
Raummodell (Kühlbetrieb)

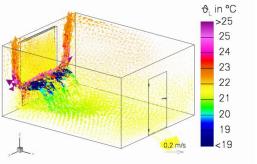


Referenzpunkt zur Anlagenregelung


- Einfluss des Wärmeschutzniveaus -

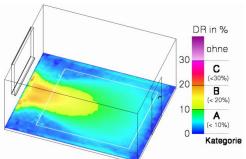

Maximale Strahlungsasymmetrie (Heizkörper; Luftwechsel $n = 0 h^{-1}$)


- Einfluss des Luftwechsels -

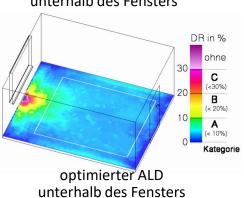

 $n = 0 h^{-1}$

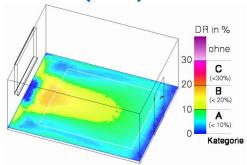
 $n = 0.25 h^{-1}$

n = 0.10 h⁻¹

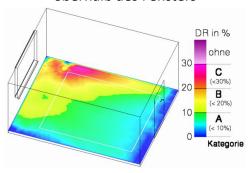


 $n = 0,50 h^{-1}$


Strömungsverlauf

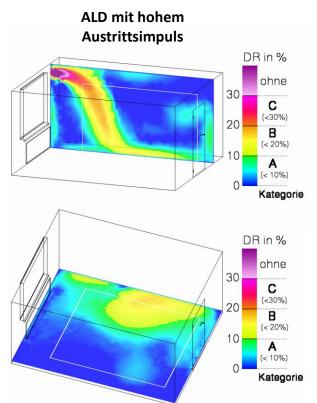

(Niedrigenergiehaus; Heizkörper; Lüftung mittels breitem, schlitzförmigem ALD unterhalb des Fensters)

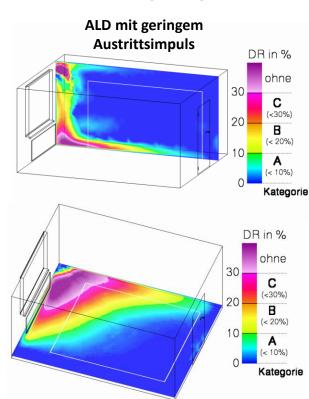
- Einfluss des Außenluftdurchlasses (ALD) -



(breiter) Schlitz - ALD unterhalb des Fensters

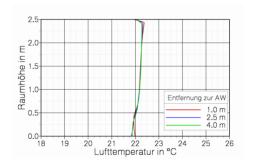
(breiter) Schlitz - ALD oberhalb des Fensters

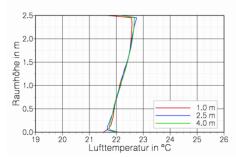

optimierter ALD oberhalb, neben dem Fenster

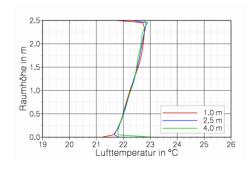

Zugluftrisiko

(Niedrigenergiehaus; Fußbodenheizung; Luftwechsel n = 0,25 h⁻¹)

- Einfluss des Außenluftdurchlasses (ALD) -

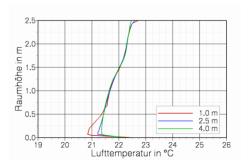

Zugluftrisiko (Niedrigenergiehaus; Heizkörper; Luftwechsel n = 0,5 h⁻¹)

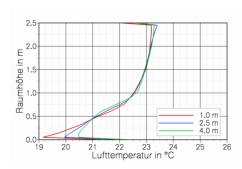


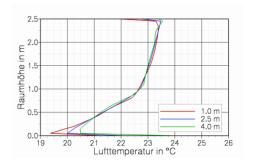

Heizkörper an Außenwand

Heizkörper an Seitenwand

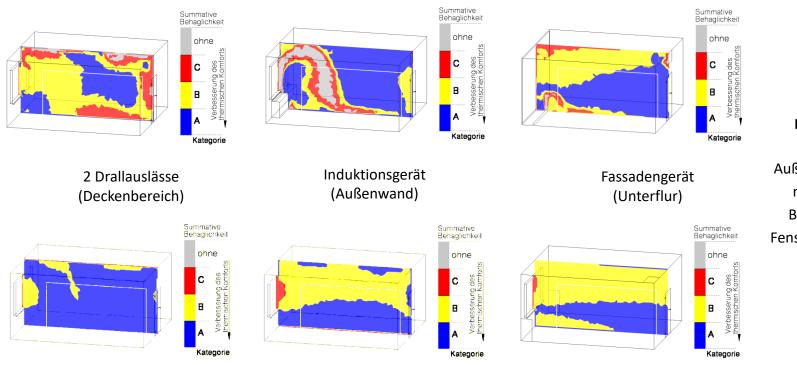
Heizkörper an Innenwand






Höhenabhängiger Lufttemperaturver lauf bei verschiedenen Heizkörper -Anordnungen im Raum

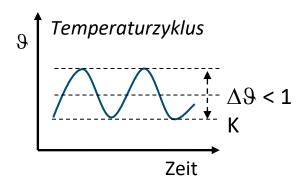
Luftwechsel $n = 0 h^{-1}$

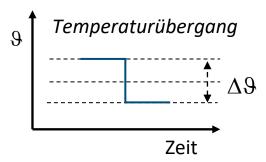


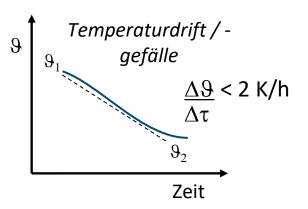
Luftwechsel n = $0.50 h^{-1}$

- Vergleich von Flächenkühlung und Luftkühlung -

Kühlfußboden


Quelllüftung

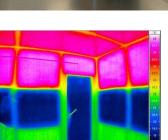

Summative
thermische
Behaglichkeit
(Feste
Außenverschattung;
mittelschwere
Bauweise; 30 %
Fensterflächenanteil)


Quelle: Richter2007

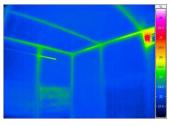
Strahlungs - Kühldecke

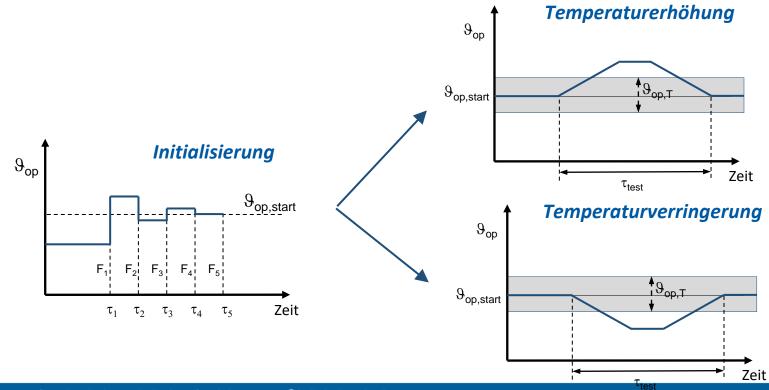
Dynamische Bewertungsverfahren

- große Änderungen von $\Delta \vartheta$ werden unmittelbar wahrgenommen
- PMV und PPD können angewendet werden
- ca. 30 min Zeitkonstante des Körpers


nur wenige Aussagen zur instationären

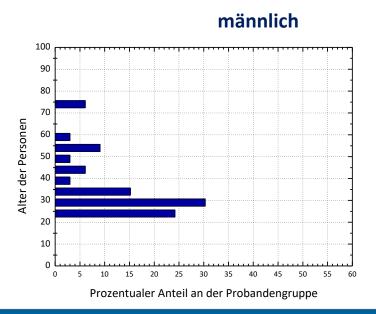
thermischen Behaglichkeit

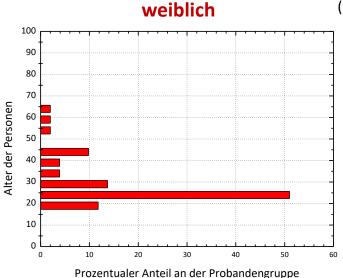

Ergebnisse von Untersuchungen in einem Klimaraum



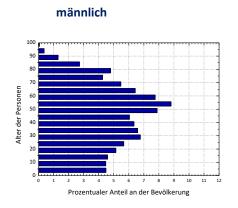
Klimaraum der Technischen Universität Dresden

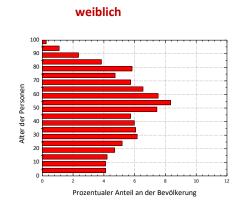
Untersuchungsmethodik

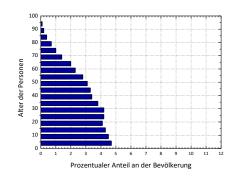


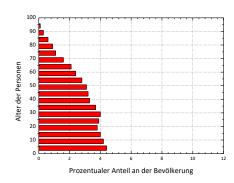

Probandenverteilung

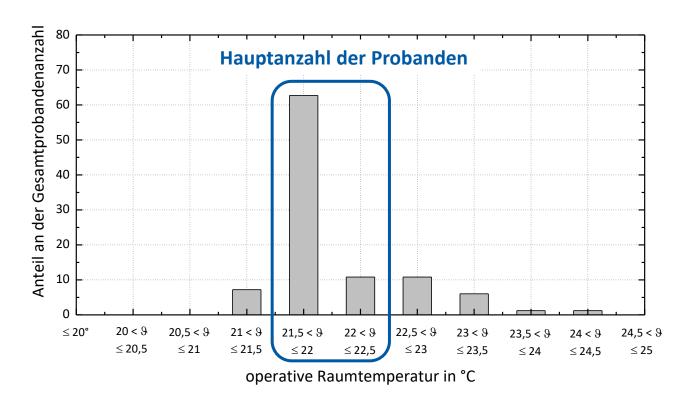
- etwa 84 Personen (aktueller Stand)
- Frauen und Männer unterschiedlichen Alters


universitäres Umfeld

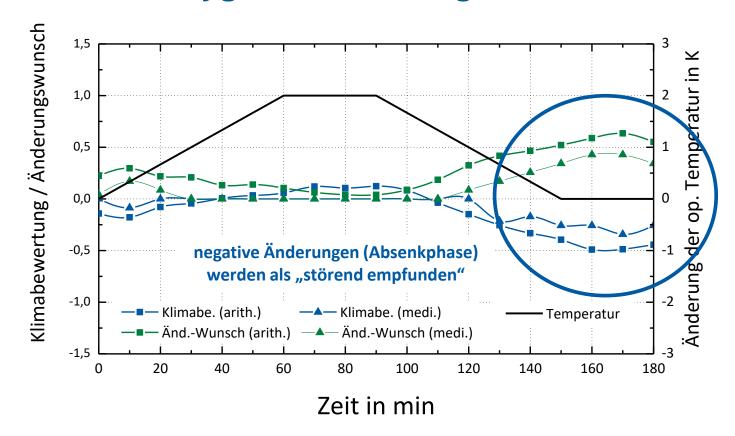

Prozentuale Verteilung der Personen innerhalb der Probandengruppe (männlich / weiblich)



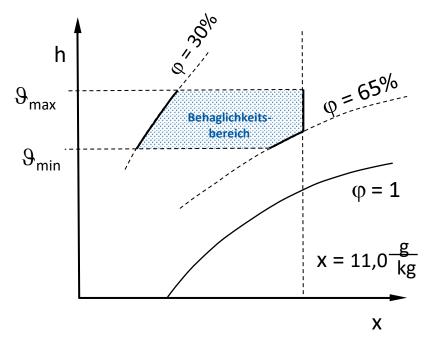

Altersverteilung – Deutschland (Jahr 2016)



Altersverteilung – Weltweit (Jahr 2016)



Wahl der operativen Raumtemperatur durch die Probanden



Klimabewertung / Änderungswunsch der momentanen Raumtemperatur als Funktion der

Relative Luftfeuchte:

Behaglichkeitsbereich innerhalb des Mollier h,x-Diagrammes

Begrenzung der relativen Feuchte:

- Austrocknung der Schleimhäute
- Wärmeabgabe des Menschen
- Schwülegrenze

Struktur der europäischen und internationalen Normen

EN 16798 – 1: Berechnungsvorschrift

1. normativer Teil

2. Anhang A (Struktur ohne Werte)

3. Anhang B (Default Werte)

ISO Norm – identischer Aufbau
(Nationale Normungsinstitute
können eigene
Kennwerte festlegen)

Compare Comp	Kategorie	Entsprechende CO ₂ -Konzentration oberhalb der Konzentration der Außenluft, in ppm, für unangepasste Personen	
	I	< 350	n) können
III < 800 Anforderungerschrieben No No No No No No No N	II	< 500	Anhang BJ Kerden
IV > 800	III	< 800 Anforderungers	chrieben
	IV	> 800 national	

EN 16798 – 2: Technischer Report (umgesetzt in einer deutschen Norm DIN SPEC 32739)

EN 16798-1: Eingangsparameter für das Raumklima zur Auslegung und

Bewertung der Energieeffizienz von Gebäuden - Raumluftqualität,

Temperatur, Licht und Akustik – Modul M1-6 (Wohn- und

Nichtwohngebäude)

EN 16798-2: Technischer Bericht (informativ) in Ergänzung zum Teil 1 EN 16798

Inhalt der EN 16798 - 1

- Thermisches Raumklima
- 2. Lüftung
- Beleuchtung
- 4. Schall
- 5. Anhang A
- Anhang B

Inhalt des Vortrages ist Teil 1

EN 16798-1 – Allgemeines / Kategorien

Beschreibung der Anwendbarkeit der verwendeten Kategorien

Kategorie	Beschreibung
I	Hohes Maß an Erwartungen; auch empfohlen für Räume, in denen sich sehr empfindliche und anfällige Personen mit besonderen Bedürfnissen aufhalten, z. B. mit Behinderungen, kranke Personen, sehr kleine Kinder und ältere Personen, zur Erhöhung der Zugänglichkeit
II	Normales Maß an Erwartungen
III	Annehmbares, moderates Maß an Erwartungen
IV	Geringes Maß an Erwartungen. Diese Kategorie sollte nur für einen begrenzten Teil des Jahres angewendet werden

Baupraxis ist Kategorie II

(Festlegungen sind unbedingt zwischen Auftraggeber und Auftragnehmer schriftlich zu vereinbaren)

a. Thermisches Raumklima / Behaglichkeit

Kriterien 1:

Empfohlene Kategorien für die Auslegung von maschinell geheizten und gekühlten Gebäuden (Anhang B1)

Beispiele empfohlener Kategorien für die Auslegung maschinell geheizter und gekühlter Gebäude

Kategorie	Thermischer Zustand des Körpers insgesamt					
	PPD in %	vorausgesagtes mittleres Votum (PMV)				
I	< 6%	-0,2 < PMV < +0,2				
П	< 10%	-0,5 < PMV < +0,5				
Ш	< 15%	-0,7 < PMV < +0,7				
IV	< 25%	-1,0 < PMV < +1,0 -0,7 < PMV < + 0,7				

Kennwert aus der DIN EN 15251

Kategorie IV wurde neu definiert

Gebäude- / Raumtyp	Kategorie	operative Rau	mtemperatur in °C	
		Mindestwert für Heizung (Winter), 1,0 clo	Höchstwert für die Kühlung (Sommer), 0,5 clo	
	I	21,0	25,5	
Wohngebäude, Wohnräume (Schlafzimmer, Wohnzimmer,	II	20,0	26,0	
Küchen) Sitzende Tätigkeit ~ 1,2 met	III 18,0 27,0		27,0	
Sitzeffde Fatigkeit 1,2 met	IV	16,0	Droblom (val. EN 12021	\
Mahasahäuda andara Päursa	Γ	18,0	Problem (vgl. EN 12831	·)
Wohngebäude, andere Räume (Hauswirtschafts-räume,	II	16,0	Kriterie	n 2·
Lagerräume) Stehende Tätigkeit ~ 1,5 met	III	14,0		ene Auslegungswerte
Stellende latigkeit 1,5 met	IV	-	•	nnentemperatur für
Büros und ähnlich genutzte	1	21,0	,	' Sommer für Gebäude
Räume (Einzel-Großraumbüros,	II	20,0	20,0	chinellen Kühlanlagen
Konferenzräume, Hör- bzw. Zuschauersäle, Cafeterien)	III	19,0	27,0 (Angang	R1)
Sitzende Tätigkeit ~ 1,2 met	IV	18,0	28,0	

Temperaturbereiche für die stündliche Berechnung der Kühl- und Heizenergie für drei Kategorien des Innenraumklimas

Gebäude- / Raumtyp	Kategorie	operative Rau		
		Mindestwert für Heizung (Winter), 1,0 clo	Höchstwert für die Kühlung (Sommer), 0,5 clo	
Maharah in da Maharin	I	21,0 – 25,0	23,5 - 25,5	
Wohngebäude, Wohnräume (Schlafzimmer, Wohnzimmer,	II	20,0 – 25,0	23,0 - 26,0	
Küchen)	III	18,0 – 25,0	22,0 - 27,0 Empt	fohlene
Sitzende Tätigkeit ~ 1,2 met	IV	17,0 – 25,0	21,0 - 28,0 oper	ative
Mahasahii da andara Dii wa	I	18,0 -25,0	Innei	ntemperatur für
Wohngebäude, andere Räume (Hauswirtschafts-räume,	II	16,0 -25,0	die	
Lagerräume)	Ш	14,0 – 25,0		gieberechnung
Stehende Tätigkeit ~ 1,5 met	IV	-	(Anh	ang B 1)
Büros und ähnlich genutzte	1	21,0 – 24,0	23,5 - 25,5	
Räume (Einzel- Großraumbüros,	II	19,0 - 25,0	23,0 - 26,0	
Konferenzräume, Hör- bzw.	Ш	19,0 -25,0	22,0 - 27,0	
Zuschauersäle, Cafeterien) Sitzende Tätigkeit ~ 1,2 met	IV	17,0 – 25,0	21,0 - 28,0	

Auslegungskriterien für lokale thermische Unbehaglichkeit

	Zugluft			Luftt	kaler emp dient		ächen- eratur		Asymme	etrie der Strahlu	ngstemperatur	
	PD in %		ftgeschw. m/s	PD in %	$\Delta \vartheta$ in $^\circ extsf{C}$	PD in %	9 in ℃	PD in %	warme Decke in °C	kühle Wand in °C	kühle Decke in °C	warme Wand in °C
		Winter	Sommer									
1	10	0,1	0,12	3	2	10	19-29	5	< 5	< 10	< 14	< 23
Ш	20	0,16	0,19	5	3	10	19-29	5	< 5	< 10	< 14	< 23
III	30	0,21	0,24	10	4	15	17-31	10	< 7	< 13	< 18	< 35

keine Aussagen zu einer summativen thermischen Behaglichkeit in der Norm

Zusammenfassung

- Thermische Behaglichkeit ist die Grundlage für die Auslegung von technischen Systemen zur Klimatisierung in Gebäuden
- eine operative Temperatur von 22° C ist das "Maß" zu Sicherstellung einer hohen Zufriedenheit
- normative Verfahren bilden dies nur unzureichend ab (EN 12831)
- dynamische Aspekte bisher nicht ausreichend berücksichtigt in normativen Verfahren

Literatur

Thermische Behaglichkeit:

h,x-Diagramm:

Anlagenregelung:

Zusammenfassung / Dialog

"Die Sicherstellung der Thermische und Hygienischen Behaglichkeit ist die Grundlage für die Auslegung von technischen Systemen in der Gebäudeenergietechnik"

Weitere Informationen

Herzlichen Dank für Ihre Aufmerksamkeit!

Informationen und Termine zu unseren nächsten Online-Seminare im Jahr 2024 erhalten Sie in unserem Newsletter im Januar 2024.

Mitgliedsunternehmen des BDH-Fachbereichs Flächenheizung/-kühlung

oventrop

- Vielen Dank für Ihre Aufmerksamkeit.
- Weiteres unter <u>www.flaechenheizung-bdh.de</u>

